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Abstract. The abstract nonlocal boundary value problem

— D) o sign(t) Au(t) = g(1),(0 < t < 1),
) 4 sign(t) Au(t) = f(t), (~1 <t < 0),

u(l)=u(-1)+p

for the differential equation in a Hilbert space H with the self-adjoint positive definite
operator A is considered. The well-posedness of this problem in Holder spaces without
a weight is established. The coercivity inequalities for solutions of the boundary value
problem for elliptic-parabolic equations are obtained.
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1 A nonlocal boundary value problem. Well-posedness

Methods of solutions of the nonlocal boundary value problems for partial differential equa-
tions have been studied extensively by many researchers (see, e.g., [4]- [6], [8], [11]- [35],
and the references given therein)

The role played by coercivity inequalities (well-posedness) in the study of boundary-
value problems for partial differential equations is well known ( see, e.g., [1]-[3]). In the
present paper we study the well-posedness of the nonlocal boundary value problem

~ D) | gign(t) Au(t) = g(t), (0 <t < 1)

(. _ <t eq) 1.1
2D 1 sign(t)Au(t) = f(t), (~1 <t < 0), (1.1)
u(l)=u(-1)+p

for the differential equation in a Hilbert space H with the self-adjoint positive definite
operator A and A > 61, > 0.
First of all, let us give some estimates that will be needed below.

Lemma 1.1 [41]. The following estimates hold:

I (A%) et g <t (9) 0<a<et>0, (1.2)
e
| A%t 4| gy <t7° (9) 0<a<et>0, (1.3)
€
1 —1
1(2=e) s 2160, (14)
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-1
1 1 1
I (1 24T L AR(] - em2A%) ze<A2+A>) I —n< M(5), (1.5)

1 1 1 -1
| Az <1 Fe AT AT — e - 2e<A2+A>) | o< M(6). (1.6)

With the help of the self-adjoint positive definite operator B in a Hilbert space H, the
Banach space E, = Eo(B,H) (0 < @ < 1) consists of those v € H for which the norm
(see [38]-[39] )

| vlle.= Sl;lgzl*a | Bezp{—zB}v | + || vla

is finite. By the definition of E, (B, H)

D(B) C Eo(B,H) C Es(B,H) C H (1.7)
for all g < a.
Lemma 1.2 [37]. For 0 < o < 1 the norms of the spaces E,(A?, H) and Es (A, H) are

equivalent.

Lemma 1.3 . For 0 < a < 1 the following estimates hold:

1
_A2 _A
He ||H~>EQ(A%,H) SQ,H@ ||HHE%(A,H) §2) (18)
-2 <2 1
| e ||H—>E%(A,H) <2 (1.9)
(| T (1.10)

Proof. Estimate (1.8) is obvious. Using estimates (1.2)-(1.3), we get

1 1
217 || Adeap{—zA}e 470 B 7
H H—H
x [[Aeap{—zAY |y lolly < lvllg,
2l A%ezp{—zA%}e_Av < H e H
H H—H

lefa

l1—a 1
A2 —z A2 H <
exp{-=zA2}| olly < el

for all z,z > 0 and v € H. From that estimates (1.9)-(1.10) follow. Lemma 1.3 is proved.

Let us denote by C*([~1,1], H),C% ([-1,0], H),C*([0,1], H),0 < a < 1 the Banach
spaces obtained by completion of the set of all smooth H-valued functions ¢(¢) in the
norms

Il o llcaq=1,1.m= lelleq=1,1,m1)

+ sup IIsD(tJrT)—w(t)HHJr sup IIsO(t+T)—<p(t)HH’

=3
—1<t<t+7<0 T2 o<t<t+r<1 T
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lot+7) —o)lla
+ su rey
16 o v Ielegoron +__swp  SEEETL
pt+71) =)
| @ llomonm=lelcqoum +  sup N —e@lla
o<t<t4+T<1 T

where C([a,b], H) stands for the Banach space of all continuous functions ¢(t) defined on
[a, b] with values in H equipped with the norm

||80||C([a b,H) = H<1a§b||80( Moz

Lemma 1.4 . Suppose g(t) € C%([0,1], H) and f(t) € C=([~1,0], H),0 < a < 1. Then
the following estimates hold:

1

|| / ates2 (g(s) — () dsll, 4y < ﬁ 9l o oy (L11)
0
H / Ar A (g(s) — () dsll,y 4 sﬁngncaqom, (112)
H / Ae~ (A (f(s)f(1>>ds||E%<A,H>sﬁ|fnC%q1,0],H>, (1.13)
0
H / AR (f ) = F1) dslly 1) € o )ancz o (119)
1
; 1
I [ Akt (0(s) = g0 sl o < mms Iollenqon - (119)
0
1 L . M
[ /AZe (1=9)4% (9(s) = g(1)) ds|lpg (a.m) < al—a) 9!l e 0,1, 21 - (1.16)
0

where M does not depend on «, f(t) and g(t).

Proof. Using estimates (1.2)-(1.3), we get

1 1 1 1
2o Aieacp{—zAf}/Aie_SA2 (g(s) — g(0))ds
H

1

1
<o [t gt g0l o

H—H
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1

—a 5 1
<zt /mds gllcaqo,n,my < 77 9l ceqo,u,m) (1.17)
0

for all z, z > 0 and ¢(t) € C*([0, 1], H). Using estimates (1.2)-(1.3), we get

1 1
1 1
[ttt o) —gopas| < | HAes“ lo(s) — 9(0) I ds
H—H
0 H 0
1 d 1
S
< /81—_CY 9]l ¢ 0,17, 1) = o g/l (0,17, 1) (1.18)
0

for g(t) € C*([0,1], H). From (1.17)- (1.18) estimate (1.11) follows. In a similar manner
one establishes estimates (1.12) and (1.13). Using estimates (1.2)-(1.3), we get

0
2l A%eacp{—zA%}/Ae_(sH)A (f(s)— f(=1))ds
1 H
1

<o [ |atestteema] st - sl o

H—H

0 .

3\? [ 23(s+1)3

e’

=7 () / 2rsr i Mot o (1.19)

Mzl M |
11—«

- (1—a)(=2)=" I£lle (10000 = fllos 1.0

for all z, 2 > 0 and f(t) € C%([~1,0], H). Using estimates (1.2)-(1.3), we get

0 0
[ac e~ seas| < [acema| i) - sl ds
1 H —1

0

ds 2
= / (s+1)1-% I les (0. = 5 1 les -100m) - (1.20)

-1

From (1.19)-(1.20) estimate (1.14) follows. Using estimates (1.2)-(1.3), we get

1
1 1
217% Aeﬂa’p{_Zz‘l}/Aae_SA2 (9(s) — g(0)) ds
0 H
1

1
<18 / HAieZAeW lg(s) — g(0)] ds

H—H
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5%ds |9l ca (0,17, »
H—H

1
1-9 3 —zA —SA%
<z "2 Aze"*e
0
C

*([0,1], H). Since

1 /3\ 1
< min = |l=) =
H—H 7 \e/ s2

for all z, z > 0 and all s, s > 0, we have the bounded

for all z, z> 0 and g(t) €

1
!
HA?e #AgmsAz

1

3 LA —sA%
Aze #%e™?
0

1
< | <
ds < —-
Heon ) f + ) (Vz)
Then

1
2% Aexp{sz}/A%e_sAi (9(s) = 9(0))ds|| < Millgllceo,1),m) (1.21)
H

for all z, z > 0 and ¢(t) € C*([0, 1], H). Using estimates (1.2)-(1.3), we get

1 1
1 1
/ Abem4E (g(s) — g(0))ds| < / HA%e—sAz
0 H 0

1

ds
S/51 = lgllcaoy.m = Hcha([o,l],H)- (1.22)
0

(s) = g(0) gz ds

lg
H—H

From (1.21)-(1.22) estimate (1.15) follows. In a similar manner one establishes estimate
(1.16). Lemma 1.4 is proved.

A function u(t) is called a solution of problem (1.1) if the following conditions are
satisfied:

i. wu(t) is a twice continuously differentiable in the segment [0, 1] and continuously
differentiable on the segment [—1,1].

ii. The element wu(t) belongs to D(A) for all t € [—1,1], and the function Au(t) is
continuous on [—1, 1.

ili. wu(t) satisfies the equation and nonlocal boundary condition (1.1).

A solution of problem (1.1) defined in this manner will from now on be referred to as
a solution of problem (1.1) in the space C(H) = C([-1,1], H).

We say that the problem (1.1) is well-posed in C'(H), if there exists the unique solution
u(t) in C(H) of problem (1.1) for any g(t) € C([0,1], H), f(t) € C([-1,0], H) and x € D(A)
and the following coercivity inequality is satisfied:

1"l eqo,a,my + 1 1,01,y + 1 A2l ary (1.23)
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< M[”g“c([o,l],H) + ||f||c([—1,0],H) + 1 Apll ]

where M does not depend on p, f(t) and g(¢).

In fact, inequality (1.23) does not, generally speaking, hold in an arbitrary Hilbert space
H and for the general unbounded self-adjoint positive definite operator A. Therefore, the
problem (1.1) is not well- posed in C(H)[8]. The well-posedness of the boundary value
problem (1.1) can be established if one considers this problem in certain spaces F(H) of
smooth H-valued functions on [—1,1].

A function u(t) is said to be a solution of problem (1.1) in F'(H) if it is a solution of this
problem in C(H) and the functions u”(¢) (¢t € [0,1]),u'(¢)(t € [-1,1]) and Au(t)(t € [-1,1])
belong to F'(H).

As in the case of the space C'(H), we say that the problem (1.1) is well-posed in F(H),
if the following coercivity inequality is satisfied:

||U”||F([0,1],H) + ||“/||F([71,0],H) + ||Au||F(H) (1.24)
< M[HgHF([O,l],H) + Hf”F([fl,O],H) + [ Apll 5]

where M does not depend on pu, f(t) and g(t).

In paper [41] the well-posedness of problem (1.1) in Holder spaces C*([—1,1], H), (0 <
a < 1) with a weight was established. The coercivity inequalities for the solution of
boundary value problems for elliptic-parabolic equations were obtained. The first order of
accuracy difference scheme for the approximate solution of the nonlocal boundary value
problem (1.1) was presented. The well-posedness of this difference scheme in Holder spaces
with a weight was established. In applications, the coercivity inequalities for the solution
of difference scheme for elliptic-parabolic equations were obtained.

Note that the coercivity inequality (1.24) fails if we set F(H) equal to C*(H) =
C*([-1,1],H),(0 < a < 1). Nevertheless, we can establish the following coercivity in-
equality.

Theorem 1.5 . Suppose Ap € E, (A%,H) , f(0) +9(0) € Ea (A H), f(—=1)+g(1) €

E, (A%,H) and g(t) € C*([0,1], H), f(t) € C%([~1,0], H),0 < a < 1. Then the boundary
value problem (1.1) is well-posed in a Holder space C*(H) and the following coercivity
inequality holds:

HUIHC%([_LO],H) + ||Au||CQ([71,1],H) + ||u”||Ca([071]7H) (1'25)

M
< s —ay Mot orom +lolosqoun] +M [148l, 11

O+ 90Ny i + 1D+ 9, 1]
where M does not depend on «, f(t), g(t) and p.

Proof. First, we will obtain the formula for solution of the problem (1.1). It is known
that (see, e.g., [7]) for smooth data of the problems

{ —u" )+ Au(t) =g (t),(0<t<1), (1.26)

u(0) = ug, u(l) =uy,
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{ Z/(((f));fotf t)=f@1),(-1<t<0), (1.27)

there are unique solutions of the problems (1.26), (1.27), and the following formulas hold:

1\ 1 1 1
u(t) = <I — €2A2) {<et‘42 - e(t+2)A2) U (1.28)
1 1 1 -1
. (euw - e(m)Aa) } - (1 B >

and
¢
u(t) = eug + /e(t_s)Af(s)ds, —1<t<o. (1.29)
0
Using the condition u(1) = u (—1) + p and formulas (1.28), (1.29), we can write

1\ ! 1 1
u(t) = <I - €2A2) K@t‘“ - e(t+2)A2) ug (1.30)

—1
1 1 1 -1
+ (e(lt)AE — e(tH)AE) eiAuo + / 67(1+S)Af(5)ds + w — (I — €2A§>

[}

A_%Q_l (e—(t+s)Ai _ e—t—sAE) g(s)ds, 0<t<T1.

o _

For wg, using the condition «'(0+) = Au(0) + f(0) and formula (1.30), we obtain the
operator equation

1\ ! 1
Au (0) + f(0) = (I — 6_2A2) [—Aé (I—|— 6_2A2) U (1.31)
—1 1
1 1
42427 A% [ ey, +/67(1+S)Af(s)ds +ul|+ /efSAzg(s)ds
0 0
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1
-1
- (I - 6_2A%) QA%e_A% /14_%2_1 (e_(l_s)Aé - e_(s"’l)A%) g(s)ds.
0

Since the operator
I+ 6_2A% +A3(I - G_QA%) - 26_(A%+A)

has an inverse

—1
T= <I + 672A% + A3 (I—- 672A%) — 26<A%+A))
it follows that )
1
w =T [e™4? 2/67(1+S)Af(8)d8 (1.32)
0

1
1 1 3
_/A‘% (6_(1—3),42 _ e—(s+1)A2) g(s)ds| + 2747
0

1
+ <I - 6_2A§> T —A_%f(()) + /A_%e_s’ﬁg(s)ds
0

for the solution of the operator equation (1.31). Hence, for the solution of the nonlocal
boundary value problem (1.1), we have formulas (1.29), (1.30) and (1.32).
Second, we will establish estimate (1.25). It is based on the estimates

HUIHC% ([~1,0],H) + || Aul |C% ([—1,0],H) (1.33)

M
<@ q— o 3 M| A 0
- %(1 — %) Hf”cz ([-1,0],H) + H ug + f( )HE%(A,H)

for the solution of an inverse Cauchy problem (1.27) and on the estimates
" A M
I e o, + MAulleaqon.m < a5 M9llcao,,m (1.34)

Ml Ao = gO) 43y + 14w = 9Dl 43 ]

for the solution of the boundary value problem (1.26) and on the estimates

M

|| Auo + f(O)HE%(A,H) < m[”gﬂca([o,uﬂ) + Hf”c%([—l,o},H)] (1.35)

M [Aul 1)+ 15O) + 9Oy ()

M
| Aug — 9(0)||EQ(A%,H) < m[”f”c%([,l,o]ﬁ) + 19/l e o,17,70)] (1.36)

+M (1Al 3 ey + 15O + 9O gy (1.1
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M
|Aur — 9(1)|\EQ(A%,H) < m[”f”c%([,w]ﬂ) + ll9llca oy, m)] (1.37)

M (140l ot 1O + 9Oy ay + 1D+ 90l 4t

for the solution of the boundary value problem (1.1). Estimates (1.33) and (1.34) were
established in [9] and [10]. Now, first step would be to establish (1.35). Using (1.32), we

get
-1

Aug + £(0) _ A [2/A6—<1+5>A (f(s) = f(=1))ds

0

+2 (e = 1) f(-1) - <1 - e“) g(1) — g(0) + <eA% - 2eA> f(O)}

T / Ak (g(s) — g(0)) ds + T [9(0) + F(0)].
0

Using this formula and estimates (1.2), (1.3), (1.5), (1.9), (1.13), (1.15) and (1.16), we
obtain

40+ F Oy oy < 1T e
0
< |2 [ e @91 (166) - p-1)as
1 E%(AH)
1
+] [ At 0-91% (g(5) = g1 ds
0 Eg(AH)

1
—A2

T e 2+ e, ) 1Dl
H—E g (A,H)
+(1+ = )||g<1>||H
H—H
1
2 Auly + 9O + ( ] — HeAHHHH) |f<o>|H]
H—H

1
1 A%
T g /A2€ A% (9(5) — 9(0)) dsl| 5y (a,m) + Il 12 19(0) + £ O}l g (1)
0

M
= a(l—a) {”fHC%([—l,O],H) + Hg”C“([O,l],H)} +M {HAMHEQ(A%H)

EJQTDE, 2011 No. 49, p. 9



+1£(0) + g(O)HE%m,H)} '

Second step would be to establish (1.36). Using (1.32), we get

Aug - g(0) = Te=4* {2 / Aem (DA (f(s) = f(=1))ds

0
- /1 A9 (g(5) — g(1)) ds + 24p
0
+2(e7* = 1) f(-1) - <I - eA%> g(1) + <€A% + QeA) g(O)}

o1 [aremt (g(s) - g(0)) ds - T (1 - e-“%) (F(0) + 9(0)).
0

Using this formula and estimates (1.2), (1.3), (1.5), (1.6), (1.8), (1.11), (1.12) and (1.14),
we obtain

Ad
—_ 2
e

14w = 9(O)ll a4 gy S N7l
H—H

0
<2 [ 4e A (4(5) — (1)) ds

1
1 Eo(AZ,H)

1
1
* / Az (07942 (g(5) — g(1)) ds
0 EQ(A%7H)

1
AT gy |

C ROl M) IFED g
HHEQ(A§7H)

+<1+

1
2 Al + ( ~ab

A3
-

) ol

H—H

. Lo HeAH,M) |g<o>|H]

H—H

Eo (A2, H)

1
T | / AbeAY (g(s) — g(O))dsl|
0

n HA%TH 14 [le—24?
H—H

} IO + 7O

H—H Eq(AZ2,H)

M
5 1% oo m *I9llcngonn] + M (140l 5 41 i,

Toll-a

17O + 9Oy (a1 - (1.38)
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Third step would be to establish (1.37). Using (1.32), we get
Aur — g(1) = e~ [Aug — g(0)] + e~ [g(0) + f(=1)] + Ap

-1

+ / Ae=UH94 (f(s) — F(—1))ds — ((—1) + g(1).

0
Using this formula and estimates (1.2), (1.16), (1.6), (1.8), (1.11), (1.12) and (1.38), we

obtain
s =gl 13y < e e 1400 = 90) 3

e by DOl + 1D+ 1m0

0
+ /Ae*(1+S)A (f(s)— f(=1))ds +||f(—1)+g(1)||Ea(A%,H)
1 Eo(A%,H)

M
S al—a) {”fHC%([fLO],H) + Hg”C‘l([O,l],H)} +M {HAMHEQ(A%,H)

£ + 9Oy iy + 17D+ 9D 43 ]

Theorem 1.5 is proved.
Remark 1. Theorem 1.5 holds for the solution of the problem (1.1) in an arbitrary

Banach space E with strongly positive operator A under the assumptions

1 1 1 -1
‘ <I+€2A§ + Az <I — €2AE) — 2€(A§+A)>

—1
Az (I +e2A% 4 g} (1 - em) - 2e<A%+A>)

Remark 2.The nonlocal boundary value problem for the elliptic-parabolic equation

< M,

E—FE

< M.
E—FE

dult) | Ay(t) = f(t),0 <t <1,
=g

dt2
— ) 4 Ay(t) = g(t), —1 <t <0,

in a Hilbert space H with a self-adjoint positive definite operator A is considered in paper
[42]. The well-posedness of this problem in Holder spaces C*(H) without a weight was

established under the strong condition on p, f(—1) 4+ ¢g(1) and f(0) + g(0)
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2 Applications

First, the mixed boundary value problem for the elliptic-parabolic equation

—uy — (a(2)ug)y +0u=g(t,z),0 <t <1,0<z <1,

ut + (a(z)ug)r — du = f(t,z),-1<t<0,0<x <1,

f0,2)+g(0,2) =0, f(—1,2) + g(1,z) = 0,0 <z < 1, 2.1)
u(t,0) = u(t, 1), ug(t,0) = ug(¢,1), -1 <t <1,

u(l,z) =u(-1,z),0 <z <1,

u(0+,z) = u(0—, ), us(0+,z) = us(0—,z),0 <z <1

generated by the investigation of the motion of gas on the nonhomogeneous space is consid-
ered (see [6] and [40]). Problem (2.1) has a unique smooth solution u(t, ) for the smooth
a(x) > a > 0(x € (0,1)), and g(¢t,z)(t € [0,1], z € [0,1]), f(t,z)(t € [-1,0],z € [0,1])
functions and ¢ = const > 0. This allows us to reduce the mixed problem(2.1) to the
nonlocal boundary value problem (1.1) in a Hilbert space H = L]0, 1] with a self-adjoint
positive definite operator A defined by (2.1).

Theorem 2.1 . The solutions of the nonlocal boundary value problem (2.1) satisfy the
coercivity inequality

[ wst llowoarLafon)) + Il e log (101, mapo,0)) + 11 % leoq-1,0,w210.1)

< M
< ai—ay W9 losonzaom + 1 c# 10,001

Here M does not depend on «, f(t,x) and g(t,x).

The proof of Theorem 2.1 is based on the abstract Theorem 1.5 and the symmetry
properties of the space operator generated by the problem (2.1).

Second, let 2 be the unit open cube in the n-dimensional Euclidean space R™ (0 <
rp <1, 1<k < n)with boundary S, Q@ =QUS. In [~1,1] x ©, the mixed boundary
value problem for multi-dimensional mixed equation

—Utt — Z (a’T(z)uIr)Ir = g(tv'r)vo <t < 17:C € Qa
r=1
ur + Y (ar(2)ug, )e, = f(t,x), -1 <t <0,z €Q, (2.2)
r=1 _ .
f(0,$)+g(0,1'>:O,f(*l,l')ﬁ’g(l,l'):O,SCEQ, o
u(t,z) =0,z € S, -1 <t <Lu(l,z) =u(-1,2),z € Q,

w(0+,2) = u(0—, x), u(0+,2) = u(0—, ),z €

is considered. The problem (2.2) has a unique smooth solution u(t,z) for the smooth
ar(x) 2 a >0 (z € Q) and g(t,z) (t € (0,1), z € Q), f(t,x) (t € (-1,0), x € Q)
functions. This allows us to reduce the mixed problem (2.2) to the nonlocal boundary

value problem (1.1) in a Hilbert space H = L({2) of the all integrable functions defined
on 2, equipped with the norm

17 = [+ [ 1f@)Pdor - do,}
zeﬁ

with a self- adjoint positive definite operator A defined by (2.2).
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Theorem 2.2 . The solutions of the nonlocal boundary value problem (2.2) satisfy the
coercivity inequality
[ e ||Ca([o,1],L2(ﬁ)) + | we HC%([_LOLLQ@)D + [ w Hm([q,ﬂ,vv@(ﬁ))
< M
= a(l—a) [” 9 llca ooy + 1 ”c%q—LOLLz@))} '
Here M does not depend on «, f(t,z) and g(t,x).

The proof Theorem 2.2 is based on the abstract Theorem 1.5 and the symmetry prop-
erties of the space operator A generated by the problem (2.2) and the following theorem

on the coercivity inequality for the solution of the elliptic differential problem in Ls(€).

Theorem 2.3 . For the solutions of the elliptic differential problem

D (ar (@), )a, = w(x),z € Q, (2.3)

r=1
u(z) =0,z €S
the following coercivity inequality [36]

n
> e, oL@ < Mllwll,@)
r=1

1s valid.
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